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Resonant sloshing near a critical depth 

By D. D. W A T E R H O U S E  
Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford, OX1 3LB, UK 

(Received 28 April 1994 and in revised form 5 August) 

Oscillations of a tank at a near-resonant frequency have been shown to produce a 
response which changes from a ‘hard-spring’ to a ‘soft-spring’ response as the depth 
passes through a critical value. This paper investigates the transition region and it 
is shown, using a symbolic manipulator, that in fact the large-amplitude response is 
that of a soft spring on either side of this critical depth. 

1. Introduction 
The problem of small horizontal oscillations of a rectangular tank of water (with 

depth comparable to width) has been considered in some detail. Moiseyev (1958) 
considered how the interaction of the nonlinearity affected the response for a tank 
oscillated near its fundamental frequency. Ockendon & Ockendon (1973) investigated 
the problem using asymptotic expansions for the velocity potential and free surface 
profile. They showed that the response is exactly the same as that of the undamped 
Duffing equation and changes from ‘hard-spring’ (increasing amplitude with increasing 
frequency) to ‘soft-spring’ (decreasing amplitude with increasing frequency) behaviour 
(see, for instance, Jordan & Smith 1977, $5.6) as the depth passes through a certain 
value. This result was also noticed by Tadjbakhsh & Keller (1960) who considered 
the possible frequencies of standing waves in a tank, and Fultz (1962) provided 
experimental results to confirm this change in behaviour. What happens at the 
critical depth where the response changes from being a ‘hard-spring’ to ‘soft-spring’ 
is the problem that will be considered here. This special case was hypothesized by 
Ockendon & Ockendon (1973) and it is the aim here, through the use of a symbolic 
manipulator, to elucidate the response diagram for depths in the vicinity of this 
critical value. 

2. Problem formulation 
Following Ockendon & Ockendon (1973) inviscid, irrotational two-dimensional 

fluid motion of mean depth hL in a tank of length nL is considered. The tank 
is given a horizontal oscillation of amplitude EL ( ~ 4 1 )  and frequency o. The equa- 
tions of motion are 

v24 = 0, (2.1) 
4x = sint on x = --~cos t, .n - ~ c o s  t, (2.2) 
4z = O  on z = -h, (2.3) 

(2.4) 

ydx = 0, (2.5) 

V+(x, 2 ,  t )  = V4(X, z, t + 2n), 

I” 
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and, on z = cq, 

where the dimensional velocity potential is cL2m# and the dimensional free surface 
height is cLq. To consider oscillations near the fundamental frequency write Lo2 = 
(1 + 6)g tanh h so that (2.7) becomes 

q + (1 + 6) tanhh [4t + t c ( 4 ;  + &)I = 0, (2.8) 

and 6 (the detuning) measures how close the frequency of the oscillations of the tank 
are to the fundamental frequency. Away from resonance, when 6 is large, the solution 
can be found by considering the linearized form of (2.1)-(2.6) and (2.8) which leads 
to the solution 

cos x cosh(z + h) sin t. (2.9) 
4 ’- 6ncoshh 

Hence as 6 -+ 0 the response is O ( E / ~ )  which blows up at exact resonance. In this 
case the nonlinear terms are no longer negligible and in the regime 6c-2/3 - O( 1) we 
pose the expansion 4 N E - ~ / ~  40 + E - ’ / ~ # I  + 4 2  + * .  a with a similar expansion for q. 
Solving the resulting problems for #O and #I and using a solvability condition on the 
problem for 42 leads to 

4 - c-2/3A cos x cosh ( z  + h)  sin t, 

where A satisfies 
4 
- tanh h = 6c-2/3A sinh h + H(h)A3 
71 

(2.10) 

and 

H ( h )  = -&sech2h cosechh (9 + 15 sinh’ h - 8 sinh6 h). (2.11) 

So the response, as shown in figure 1, is the same as the undamped Duffing equation 
and looks like a ‘soft-spring’ for H > 0 and a ‘hard-spring’ for H < 0. When H ( h )  = 0 
(at h = ho = 1.06) the expansion breaks down as A grows large in a narrow detuning 
band near the origin. 

3. Problem near the critical depth 
As noticed by Ockendon & Ockendon (1973) as h gets closer to ho it is necessary 

to rescale the variables and pose new expansions for 4 and q. To deduce the correct 
scalings in this case put 

h = ho + Eahl, (3.1) 

where CI is a positive constant to be found. Substituting this into (2.10) means 
that A3ca - 0(1) together with ~ E - ~ / ~ A  - 0(1) for all the terms to balance. Hence 
A = E - ~ / ~ A  and 6 - O ( E ( ~ + ~ ) / ~ )  so that 

(3.2) 

For any expansion of 4 and q it is necessary that the nonlinear terms generate 
cosxsint terms at 0(1) so that the boundary conditions (2.2) can be fitted. This 

4 - E - ( ‘ + ~ ) / ~ A  cos x cosh(z + h) sin t. 
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FIGURE 1. Classic Duffing-like response (2.10) showing how amplitude 121 varies with detuning 

6 ~ ~ 1 ~  ; -, H > 0 ;  - - - -, H < 0. 

means that the 0(1) problem must involve odd powers of 40, in other words the first 
term in an expansion for 4 must be of the form E - ~ ~ / ( ~ ~ + ~ )  ( n  = 0,1,2,. . .). Coupling 
this with (3.2) shows that the simplest system will be when (a + 2)/3 = 4/5 or when 
a = 2/5. Hence the scalings are 

h = ho + ~ ~ / ~ h ~  and 6 ~ - ~ / ~  N O( l), (3.3) 

(3.4) 

(3.5) 
so that near ho the amplitude of the response grows from O(c1j3) to O ( E ' / ~ ) .  Substitut- 
ing (3.3), (3.4) and (3.5) into equations (2.1)-(2.6) and (2.8) and comparing O ( E - ~ / ~ )  
terms leads to the same first-order problem as before, and so the leading-order 
solutions are 

where hl is O( l), together with the expansions 
0 N &-4/5 4o + ~ - ~ / ~ 4 ~  + ~ - ~ / ~ 4 ~  + ~ - ~ / ~ 4 ~  + 44 + .. .  

q N &-4/5 qo + &C3l5ql + &-2/5q2 + &-1/5q3 + q4 + . . . , 
and 

40 = A cos x cosh ( z  + h)  sin t ,  
qo = -A sinh h cos x cos t 

but now to determine A it is necessary to find a solvability condition on the problem 
for 4 4  and q 4 .  To do this the O ( E - ~ / ~ ) ,  O ( E - ~ / ~ )  and O ( E - ' / ~ )  terms from the equations 
must be found and solved to determine 4i and qi, i = 1,2,3. (The results for 4i and qi 
are included in Appendix A.) Next considering the 0(1) terms from (2.1)-(2.4), (2.6) 
and (2.8), it is found that 

v244 = 0, (3.8) 
4 4 x  = sint on x = O,x, (3.9) 
4 4 z  = h 1 4 2 ~ ~  on z = -ho, (3.10) 

4 4 z  + tanh h0& = F ( x ,  t )  on z = 0, (3.11) 
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FIGURE 2. Response based on equation (3.14) - a plot of amplitude IAl against detuning 6 ~ - ~ / ~  in 
three cases: . . . ., hl = 1; -, hi  = -2.98; - - - - , h 1 --5. - 

V 4 4 ( X ,  z, t) = V 4 4 ( X 7  z, t + 271.1, (3.12) 

where F is a combination of 4i and yi (i = 0,1,2,3) given explicitly in Appendix B. 
Using the Fredholm Alternative on (3.8)-(3.12) gives the solvability condition 

4 2 
712 71 

I ^  F(x, t )  cos x sin tdxdt - 0.62h1 C = - tanh ho, (3.13) 

where C comes from the expression for 4 2  (see Appendix A). Substituting the 
expressions for 4i and yi, i = 0,1,2,3, into F and using (3.13) finally yields 

(3.14) ~ E - ~ / ~ A  sinh ho + A3hlH'(ho)  + 1.80A5 = - tanh ho. 

Figure 2 shows plots of the response /A1 against 6 ~ - ~ / ~  for hl ranging from 1 to -5.  
It is clear that close to either side of this critical depth the large-amplitude response 
is like that of a 'soft-spring'. As hl decreases through -2.98 the number of solutions 
changes from 3 to 5 and the 'hard-spring' response begins to emerge. When hl is very 
large and negative the large-amplitude branches move off to infinity and the response 
will look like figure 1 for H < 0. This can also be seen by taking the limit of (2.10) 
as h + ho. To do this write h = ho + c2l5hl in (2.10) to get 

4 
7c 

4 
6 ~ - ~ / ~ 2  sinh ho + ~ * / ~ 2 ~ h ~ H ' ( h o )  + o ( E ~ / ~ )  = - tanh ho 

which matches (3.14) as hl grows to O(@) with A = E ~ / ~ ~ A .  We also note that the 
coefficient of the quintic term in (3.14) never vanishes so that this response is valid 
as hl + 0. 

Finally we note that we can systematically write down a uniformly valid response 
for all depths and detunings if we consider 

71 

@ = w2L[A,  cos x cosh(z + h)  sin t + O(c2/")] ,  

5 = L[--A,sinhhcosxcost + O ( E ~ / " ) ]  
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where @J and 5 are the dimensional velocity potential and free surface respectively, 
A, = and n takes the values 1, 2 or 3 depending on the detuning range. It is 
clear that the final response can be written independently of n in the form 

(3.15) 
4E 
- tanh h = 6AE sinh h + A:H(h) + A:H2(h) + 0(d2AE) 
71 

where H2(h0) = 1.80. Clearly (3.15) encompasses (2.9), (2.10) and (3.14). 

4. Conclusions 
The response near the critical depth ho has been found and is valid for all hl 

showing that if hl < 0 there is a large-amplitude response which was not apparent 
from the earlier analysis of Ockendon & Ockendon (1973). The response for all non- 
shallow depths can now be given and a unifying statement (3.15) has been found. The 
stability of the different branches has not been determined, but it is likely that, as in 
Duffing’s equation, the stability will change at each vertical tangent of the response 
diagram. 

The author would like to thank Professor W. Chester, Dr H. Ockendon and Dr 
J. R. Ockendon for useful discussions on this work and the comments of one of the 
referees which helped formulate (3.15). 

Appendix A. Expressions for 4i and qi (i = 1,2,3) 
The results for 4i are included for completeness. To derive these results is extremely 

long-winded and it is noted that the use of the symbolic manipulator MAPLE was 
used to simplify matters. 

$1 = B591 sin t + A’(0.46 - 0.12592) sin 2t - (A2/8)t, 
4 2  = C591 sin t + AB(0.93 - 0.23592) sin 2t + A3(-0.59591 + 0.004593) sin 3t 

4 3  = D591 sin t + ( [0.26A4 - 0.23AC + 0.30h1A2 - 0.12B2]592 
+0.01A3593 sin t - (AB/4)t + Ahl cos x sinh(z + ho) sin t, 

+0.004A4594 + [1.02hlA2 + 0.46B2 + 0.60A4 + 0.93ACl) sin 2t 
+A2B(-1.76qI + 0.01593) sin 3t + A4(0.001594 + 0.15%?2 + 0.13) sin4t 
+hl [B cos x sinh(z + ho) sin t - 0.23 cos 2x sinh 2(2 + ho) sin 2t] 
+0.03A2B%3 sin t 

where B,  C and D are arbitrary constants and 

W,, = cos nx cosh n(z + ho), n = 1,2,3,4. 

The qi (i = 1,2,3) can then be found from equation (2.8). 

Appendix B. Expression for F(x, t )  
The function F(x, t) is given by 

a a 
a t  a t  

F(x,t) = Fl(x,O,t) - tanhho-F2(x,O,t) +hl(tanh2ho - 1)-F3(x70,t) 

a v o  
a t 2  

- tanh h 0 ( 6 ~ - ~ / ~  + h:(tanh2 ho - 1))-(x, 0, t) 
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